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Magnetic interaction between coupled quantum dots
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University of Jyväskylä, Physics Department, PO Box 35, 40351 Jyväskylä, Finland
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Abstract. We study the magnetic coupling in artificial molecules composed of two and four laterally
coupled quantum dots. The electronic ground-state configurations of such systems are determined by
applying current spin density functional theory which allows to include effects of magnetic fields. While
the ground-state of a two-dot molecule with strong enough inter-dot coupling tends to be antiferromagnetic
with respect to the spins of the single dot components, we find that a square lattice of four dots has a
ferromagnetic ground state.

PACS. 71. Electronic structure – 73.20.Dx Electron states in low-dimensional structures (superlattices,
quantum well structures and multilayers) – 85.30.Vw Low-dimensional quantum devices (quantum dots,
quantum wires etc.)

1 Introduction

Different kinds of micro- and nanostructures are nowa-
days fabricated in many laboratories around the world. A
very popular species among them are quantum dots, i.e.
small electron islands: electrical gates on top of a semi-
conductor heterostructure or etching techniques allow a
confinement of the two-dimensional electron gas which is
controllable in size and shape. Many of the properties of
such artificially fabricated finite quantum systems show
analogies to atomic physics. For this reason, quantum dots
are often referred to as “artificial atoms” [1]. Going one
step further, one can imagine to combine two (or more)
quantum dots to an artificial molecule. Such structures
can easily be realized experimentally – for example by
gating the dot such that only a small barriers separate
the single dots from each other. Other possibilities to re-
alize artificial molecules are vertical dot molecules [2,3].
Quantum dots or dot molecules are interesting as they are
ideal objects to study the properties of finite quantum sys-
tems of interacting particles experimentally. Compared to
their atomic or molecular counterparts, they furthermore
have the advantage that their two-dimensionality allows
the study of magnetic effects in very strong fields. Much
recent research focussed on the measurement of addition
energy spectra and their theoretical interpretation. Quan-
tum dot molecules have been extensively investigated by
many groups. Conductance and the Coulomb blockade of
two lateral quantum dots connected by a quantum point
contact (QPC) have been studied experimentally [4] and
theoretically [5–7]. Several other experimental investiga-
tions pointed at the analogy of “artificial molecules” and
“artificial crystals” [8].
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Antiferromagnetic ordering of coupled quantum dots
was observed by G. Burkard et al. [9]. They calculated the
exchange energy between the spins of two coupled dots,
each containing one electron, and found that the antifer-
romagnetic state changes to ferromagnetic with increas-
ing magnetic field. According to them, this opens up the
possibility to use coupled quantum dots as quantum gate
devices operated by magnetic fields.

In this article, we examine the magnetic coupling be-
tween quantum dots confining a larger number of electrons
and show that both ferromagnetic and antiferromagnetic
ordering may occur in artificial molecules composed of two
and four quantum dots. A spontaneous polarization is ob-
served in the regions of the quantum point contacts com-
bining two and four single-dot components. In magnetic
fields the electrons can get localized in the region of the
saddle barrier connecting the single dots.

2 A two-dot molecule

We model a quantum dot molecule composed of two single
quantum dots by trapping 2N interacting electrons (which
are restricted to move in the plane r = (x, y) and are
subject to a magnetic field B = Bez) in a suitably formed
confining potential V (r). Approximating the confinement
of each single dot by a spherical Gaussian, the external
potential for the double-dot molecule can then be written
in the form

V (x, y) =
1
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Fig. 1. External scalar potential V (r) along the x-axis for
d = 16 a∗B, d = 18 a∗B and d = 20 a∗B.

The value of r0 determines the degree of harmonicity of
V (r) and together with the value of ω0 defines the av-
erage electron density in the single-dot components. As
the size of the single dots scales proportional to

√
N ,

we set r0 = α
√
N and choose the scaling parameter α

such that r0 = 10 for N = 10. The average particle
density of the dot, n0 = 1/(πr2

s ), is determined by the
two-dimensional Wigner-Seitz radius rs. We adjust the the
strength ω2

0 = e2/(4πε0εm∗r3
s

√
N) of the external confine-

ment such that n0 is approximately constant in the single
dots. The parameter d determines the distance between
the centers of the two Gaussian potentials. (Due to the
superposition of the Gaussians the distance between the
two minima is actually slightly smaller than d.) Figure 1
shows the profile of the external potential along the x-axis
for different dot-dot-distances.

The interaction between the electrons is the 1/r
Coulomb interaction screened with the static dielectric
constant ε of the material in question. To model the
ground-state densities and energies of the many-electron
system we apply the current spin density functional for-
malism (CSDFT) [10] which allows the inclusion of gauge
fields in the energy functional. We perform the self-
consistent calculations such that any restrictions in the
spatial symmetries of the solutions are avoided. For a
more detailed description of the numerical techniques we
refer to Koskinen et al. [11]. We here only mention that
the magnetic-field dependent exchange-correlation energy
per particle was obtained from an interpolation between
the Tanatar-Ceperley [12] results (generalized for inter-
mediate polarizations) in zero fields and the parametriza-
tion for polarized electrons in the lowest Landau level
by Fano and Ortolani [15]. More details are given in
references [11,16].

The iterative solution of the Kohn-Sham equations re-
sults in different self-consistent solutions, corresponding to
local minima in the potential energy surface of a free pa-
rameter space, as no symmetry restrictions were imposed.
Thus, in order to find the ground state out of the possible
self-consistent solutions, special care has to be taken in
varying the initial conditions such that either antiferro-

magnetic or ferromagnetic coupling can be favored. In
some cases we found it useful to fix the number of spin-up
and spin-down electrons. In all cases, random perturba-
tions were added to the initial potential.

2.1 Ground-state electronic structure of double-dot
molecules

In the following, we first concentrate on two coupled dots
with 10 + 10, 12 + 12 and 14 + 14 electrons. (Here N +N
means that we have 2N electrons in the double dot sys-
tem and on the average N electrons in each single dot.)
We set the 2D density parameter to rs = 1.51 a∗B, a
value corresponding to the equilibrium density of the two-
dimensional electron gas (which is actually very close to
the value estimated in many experiments). The results will
be given in effective atomic units with effective energies in
Ry∗ = m∗e4/2~2(4πε0ε)2 and length units in Bohr radii,
a∗B = ~2(4πε0ε)/m∗e2. Using the material parameters for
GaAs, the effective mass is m∗ = 0.067me, and the di-
electric constant is ε = 12.4. Thus, one effective Rydberg
corresponds to Ry∗ = 5.93 meV, and the effective Bohr
radius equals a∗B = 97.9 Å. Then, one atomic unit of the
effective magnetic field corresponds to T∗ = 6.86 T.

For the two-dot molecule we found it useful to define
the total spin of the two single dots at both sides of the
molecule separately as

Sdot =
1
2

∫
x>0

dx
∫

dy(n↑(r) − n↓(r)), (2)

where n↑ and n↓ are the total spin up and spin down
densities, respectively.

We first consider a two-dot artificial molecule contain-
ing 10 + 10 electrons (without external magnetic field).
Figure 2 shows the total electron density and the spin
polarization for the antiferromagnetic ground state for
four different values of the dot-dot distance d. A single
10–electron dot has total spin Sdot = ±1 in its ground
state. At distances between d = 24 and d = 18 a∗B, the
dots are almost separated and only very weakly coupled.
The spin density of each dot can have a broken symmetry
since the mean field reflects the internal symmetry of each
dot [13,14].

With respect to the total spins in the single dot compo-
nents of the dot molecule, Sdot, their ground state is anti-
ferromagnetic with Sdot = ±1.00 for d = 24, Sdot = ±1.03
for d = 20 and Sdot = ±1.08 for d = 18. (Note that in the
case of antiferromagnetic dot coupling the total spin in
the each side need not to be an integer number). When
the distance between the single dot components decreases
to d = 16 a∗B, i.e. the coupling between the single dots
increases, the ground state remains antiferromagnetic but
the total spin in each dot becomes smaller, being only
Sdot = ±0.08.

The double dot with the antiferromagnetic ground
state (i.e. Sdot,1 > 0 and Sdot,2 < 0 or vice versa) has a fer-
romagnetic spin-isomer with a slightly higher total energy
than the antiferromagnetic ground state. At d = 18 a∗B
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Fig. 2. Contours of the total density n↓+n↑ (left column) and
spin density n↓ − n↑ (right column) for coupled quantum dots
with 10 + 10 electrons and inter-dot distances d = 16, 18, 20
and 24 a∗B (in zero magnetic field). (Dark (bright) gray-scales
indicate maxima (minima). Note that the values of the density
contours in the left and right column differ by a factor two).

this energy difference is 2.26 mRy∗. It becomes
smaller when the interdot distance increases, being only
0.33 mRy∗ for d = 20 a∗B.

We should also mention that in the ferromagnetic con-
figuration where the total spin of the dot molecule is
Stot = −2 the spin-density at the area of the point con-
tact between the two dots is positive, i.e. dominated by
the minority spin.

Figure 3 shows the energy eigenvalues of the anti-
ferromagnetic ground state and ferromagnetic isomer for
d = 18 a∗B. The antiferromagnetic state has a clearly larger
Fermi gap which is the main reason that it is lower in en-
ergy.

Next, we apply a magnetic field to the 10 + 10 dot
molecule. For small field strength B = 0.2 T∗ the ground
state electronic structure of the double dot was found to

↑ ↑↑
↑

εF

AF F

Fig. 3. Kohn-Sham energy eigenvalues of the antiferromag-
netic (AF) ground state (left) and ferromagnetic (F) isomer
(right) for a double-dot molecule with 10 + 10 electrons and
d = 18 a∗B. (The dashed line indicates the Fermi energy εF.
The shorter lines indicate the lowest unoccupied states). The
widths of the AF spectrum is 440 mRy∗ with a Fermi gap of
33.7 mRy∗, while in the ferromagnetic case the Fermi gap is
only 6.07 mRy∗.
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Fig. 4. Contours of spin down, spin up and total densities n↓,
n↑ and n for coupled quantum dots with 10 + 10 electrons and
distances d = 16, 18, 20 a∗B in a magnetic field of B = 0.3 T∗.

be fully paramagnetic, i.e. having Stot = 0 and identical
densities n↓ = n↑, for distances d = 16 and 18 a∗B and if the
distance of the dots is so large that they are fully decou-
pled. When at these d−values the field strength is raised
to B = 0.3 T∗ the system becomes magnetized, having
a total spin Stot = −2. Figure 4 shows the total density
and the spin-up and spin-down densities as a function of
the interdot distance. The density of the minority spin
(↑) is pushed away from the point-contact region which
is dominated by the majority spin. At a magnetic field
of B = 0.5 T∗ the system becomes fully polarized and
forms two maximum density droplets which are weakly
connected to each other. This behavior is in agreement
with the phase transition to the maximum density droplet
in circular dots [17,18]. In the case of a circular dot a
further increase of the magnetic field will separate from
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Fig. 5. Contours of total densities n for coupled quantum
dots with 10 + 10 electrons and interdot-distance d = 18 a∗B in
magnetic fields B = 0.5, 0.6, 0.7 and 0.8 T∗.

the maximum density droplet a ring of electrons. In the
unrestricted CSDFT this so-called Chamon-Wen [19] edge
was found to have broken rotational symmetry and con-
sists of localized electrons [16]. In the present case of a dou-
ble dot the reconstruction of the maximum density droplet
begins from the low-density region of the point contact.
There the electron density starts to form strong maxima,
each containing one electron. This is illustrated in Figure 5
where the electron density contours are shown as a func-
tion of the magnetic field. Figure 6 shows the evolution of
the single particle spectrum as a function of magnetic field
for d = 18 a∗B. Note that in the case of a double dot each
level is two-fold degenerate as we have one level in each
dot. Only in the highest occupied levels this degeneracy is
slightly split due to the interaction between the dots. Al-
ready at B = 0.2 T∗ the spectrum is drastically modified
from the zero-field case due to level crossings, although
the Zeeman splitting is still very small. At B = 0.3 T∗
the system gets partially polarized (Stot = −2). Then, at
B = 0.5 T∗ after the polarization transition a maximum
density droplet is formed, characterized by a rather reg-
ular spacing of the single particle levels. The localization
of electrons at higher fields (0.7 and 0.8 T∗) can be seen
as a condensation of the levels into a very narrow band.

In order to see how the general trends depend on the
electron number, we continue our studies for double dots
with 12 + 12 and 14 + 14 electrons.

The single dot with 12 electrons has a full electronic
shell and is non-magnetic with Sdot = 0 [14]. Correspond-
ingly, in zero field and at a large interdot-distance of
d = 20 a∗B, the double dot with 12 + 12 electrons was
found to be fully paramagnetic. At smaller distances, for

Spin Polarization

0.0 0.2 0.3 0.5 0.6 0.7 0.8

Magnetic field B  [T  ] 
*

Fig. 6. Evolution of the single-particle spectra as a function of
magnetic field for coupled dots with 10 + 10 electrons and d =
18 a∗B. The polarization transition occurs between B = 0.4 T∗

and 0.5 T∗. (The shorter lines indicate the lowest unoccupied
states.) The widths of the spectrum at B = 0 equals 440 mRy∗

with a Fermi gap of 33.7 mRy∗.

these magic single-dot components no stable convergence
could be obtained. However, when adding one more elec-
tron to the system, we found that this additional electron
tends to be localized in the neck region, as it is energet-
ically favorable to maintain the “magic” configuration of
12 electrons in each of the single dot components.

A 14–electron single dot has spin Sdot = 1 [14]. Corre-
spondingly, the 14 + 14 dot with d = 18 at zero field be-
comes antiferromagnetic with respect to the spins in two
weakly coupled single dots. In this case the integrated spin
in each side is only Sdot = ±0.3, but approaches Sdot = 1
when the interdot distance increases.

In an external magnetic field of B = 0.3 T∗ both the
12 + 12 and 14 + 14 dots become magnetic with total spin
S = −2 as in the case of the 10+10 system. The densities
are very similar to the results shown in Figure 5.

3 Four-dot molecule

The advantage of using inverted Gaussians to describe the
external scalar potential of the quantum dots is that more
complicated dot molecules can easily be constructed by
a simple superposition of the external potentials of the
single dots. Since the two-dot system prefers an antifer-
romagnetic coupling, it is now interesting to see whether
a larger dot lattice also prefers antiferromagnetism with
respect to the spins of the single dots forming the dot
lattice. To this end we have studied a square and a row
of four 10 electron dots and restricted our studies to the
magnetic field-free case.

3.1 Four dots in a square

Contrary to the double dot, which favors antiferromag-
netism, the square of four dots with 4N = 40 has
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a ferromagnetic ground state with a total spin Stot = −4.
The antiferromagnetic state with Stot = 0 is clearly
higher in energy. Figure 7 shows the electron densities and
spin densities for these two states at interdot distances
d = 18 a∗B and d = 20 a∗B. The total electron density (see
left column) is nearly independent of the magnetic cou-
pling, but the internal structure of the spin-density in each
dot (right column) depends slightly on the magnetic or-
der. Figure 8 shows the single electron eigenvalues for the
four dot square with interdot distance of d = 18 a∗B. In
the ferromagnetic case the Fermi gap is larger than in the
antiferromagnetic case, leading to the preference of ferro-
magnetism.

3.2 Four dots in a row

Furthermore, we studied a linear row of four dots (with
4N = 40 electrons) without an external magnetic field for
an interdot distance of d = 18 a∗B. Several magnetic iso-
mers were obtained. The ground state was ferromagnetic
but with a total spin Stot = −3 (and not Stot = −4 as
one would expect in the light of the results discussed ear-
lier). The Coulomb repulsion pushes the electron density
slightly towards the end of the four-dot chain: the number
of electrons in the end dots was 10.36 while it was 9.64
for the two dots in the center. The integrated spin at the
end dots was Sdot = 0.95 while it was Sdot = 0.55 in the
center dots. Two other magnetic isomers were obtained
for the row of four dots. In both of them the total spin
was zero. The total electron density was nearly identical
to that of the ferromagnetic ground state. One of the iso-
mers was an antiferromagnetic row with integrated spins
of the different single dots as Sdot = −0.96, 0.54, −0.54,
and 0.96, i.e. very similar to those of the ferromagnetic
row. In the other isomer, which energetically lies between
the ferromagnetic and antiferromagnetic states, the sign
of the spin changed in the middle of the row: the indi-
vidual dots have spins Sdot = −0.85, −0.41, 0.41, 0.85.
Figure 9 shows the density and spin-density profiles for
the three magnetic states. The total density is the same in
each case. The results show that the magnetic coupling be-
tween many-electron dots is much more complicated than
that of single-electron dots. In the Hubbard model in the
limit of strong interaction one finds that antiferromagnetic
coupling is favored [20], irrespective of the geometry of the
dot molecule. In agreement with the Hubbard model re-
sults, the LSDA indeed gives antiferromagnetic order for
the ground-state of four electrons in a four-dot molecule.

4 Conclusion

We have observed that when two quantum dots are weakly
coupled to form a quantum dot dimer they seem to prefer
an antiferromagnetic ground state. This is the case for
the 10 + 10 dot molecule, where in the single N = 10 dot
the highest orbital is more than half full, as well as for
the N = 14 dot where it is less than half full. Naturally,
nonmagnetic dots (N = 12) form a nonmagnetic molecule.

Antiferromagnetic
   

Ferromagnetic
        

         

d=18

d=20

d=18

d=20

         

Fig. 7. Contours of the total densities n↓ + n↑ (left column)
and spin densities n↓ − n↑ (right column) for a square of four
coupled quantum dots with 10 + 10 + 10 + 10 electrons, with
nearest neighbor distances d = 18 and d = 20 a∗B (without
magnetic field). (the upper (lower) panel shows the antifer-
romagnetic (ferromagnetic) state). (Dark (bright) gray-scales
indicate maxima (minima) like in Fig. 2).

In an external magnetic field the electronic structure
changes already before the field exceeds a value where
spin-polarization sets in. Increasing the magnetic field fur-
ther, polarization starts at the low-density regimes in the
neck region and proceeds until two nearly independent
maximum density droplets are formed in both sides of
the dot molecule. The properties of this state are inde-
pendent of the number of electrons in each dot. At even
higher fields the electrons start to localize like in the case
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Fig. 8. Single-particle spectra of the antiferromagnetic (AF)
isomer (left) and ferromagnetic (F) ground state (right) for a
four-dot molecule with 4N = 40 electrons and nearest neighbor
distance d = 18 a∗B (shorter lines indicate the lowest unoccu-
pied states). The widths of the AF spectrum is 400 mRy∗ with
a Fermi gap of 27.0 mRy∗, while in the ferromagnetic case the
Fermi gap of 42.2 mRy∗ is considerably larger.
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Fig. 9. Total densities n↓+n↑ and spin densities n↓−n↑ for a
row of four coupled dots with 4N = 40 electrons with interdot
distance d = 18 a∗B, plotted along the x-axis.

of single dots [16]. In the double dot, however, this local-
ization begins in the region of the neck between the two
single dots, where the average electron density is lowest.

Surprisingly, in a square of four quantum dots with
4N = 40 electrons the ground state without an exter-
nal field is ferromagnetic and the antiferromagnetic state
is higher in energy. Similarly, the row of four quantum
dots has a ferromagnetic-like ground state. The total spin,
however, was reduced by one due to the Coulomb repul-
sion which pushes the electron density slightly towards the
ends of the row.

We conclude with the remark that the magnetic cou-
pling in quantum dot molecules or lattices of several in-
teracting quantum dots is rather complex. The examples
studied above shed some light on the possible electronic
ground state structures of two-and four-dot molecules.
Much more work has to be done before general conclu-
sions can be made.

This work was supported by the Academy of Finland and the
TMR programme of the European Community under contract
ERBFMBICT972405. We are grateful to Poul Erik Lindelof
for initiating this study.
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